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The hysteresis in the perception has been observed in many perceptual experiments, but little is known

about the underlying dynamical mechanism. We simulate a visual discrimination task, as an example of

hysteresis in the perception, using a spiking neuron network and the corresponding slow dynamic

system. The hysteresis in visual perception has been reproduced in our simulation. We find that

interaction inside the selective neuron pool. The slow dynamic system reveals the dynamical

mechanism underlying the hysteresis: emerging from the lag between the response of neural system

and the fast change external stimuli when the slow dynamic system has a single steady state; emerging

from the multiple steady states regardless of the change speed of the external stimuli. In particularly,

the multiplicity of the steady state of the slow dynamic system comes from the codimension three

swallowtail catastrophe which exhibits two interacting cusp catastrophes.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The hysteresis in the perception means that what is perceived
depends on previous experiences. Hysteresis is a typical phenom-
enon in visual, auditory, and somatosensory perceptions and has
been extensively observed for many perceptual tasks [1–6]. An
example of this phenomenon is a motion perception task in which
some dots were moving in random directions, while other dots
were moving coherently in a vertical direction on the screen. The
coherence level gradually increased at first and then gradually
decreased. The subjects could perceive the vertical motion at a
threshold of the coherence level and note the disappearance of
the vertical motion at another threshold. The experiment showed
that the former threshold was larger than the latter threshold,
which implied that the perception of the vertical motion depends
on the history of the stimuli presentation [1]. In another experi-
ment [2], the subjects were required to detect a hidden letter on
the screen whose contrast gradually increased at first and then
gradually decreased. The subjects were aware of the letter at one
threshold when the contrast was increased. However, the subjects
noted the disappearance of the letter at another threshold when
the contrast was decreased. This experiment showed that the
threshold of the increasing contrast was larger than that of the
decreasing contrast. At the same time, the magnetic resonance
signal also demonstrated the hysteresis phenomenon [2]. For an
auditory system, the threshold to detect a tone whose amplitude
ll rights reserved.

).
increased was higher than the threshold for a tone that became
inaudible. A recent study about the mosquito’s auditory system
showed the hysteresis of the antennal response to a sound with a
single frequency [6].

Hysteresis in the perception has been observed for a long time,
but little is known about the underlying neural mechanism,
especially how hysteresis can emerge from single neuron activ-
ities. Hirai and Fukushima proposed a multiple layer model to
investigate the binocular parallax, and their model exhibited
hysteresis in binocular depth perception as observed by Fender
and Jules but without explanation of the key factors that induced
hysteresis [21,22]. Recently, Wilson and his coworkers proposed
that positive feedback and recurrent inhibition between neural
units could cause hysteresis [23]. A more quantitative explanation
is that cusp catastrophe or bistability underlies the hysteresis in
the perception [3,4,7]. Actually, a cusp catastrophe system has
two stable steady states and the back-and-forth transition path-
way between two stable steady states depending on the increase
or decrease of the control parameter. However, the cusp cata-
strophe is only an analogous explanation of hysteresis in the
perception, and the relationship between the microscopic neural
activities and the hysteresis in the perception for macroscopic
behavior has not yet been established. Therefore, we apply a
network with spiking neurons to simulate a simple visual dis-
crimination task and the neural activities are demonstrated as an
example of hysteresis in the perception. At the same time, we
derive a two-variable slow dynamic system from the spiking
neuron network. By analyzing the steady states of the slow
dynamic system, we find that the slow dynamic system can
operate under different regimes and the multiple stable states
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lead to hysteresis in the perception. We also find that stronger
recurrent excitation and faster change of the external stimuli both
favor hysteresis.
2. The spiking neuron model and the slow dynamic system

To investigate the neural dynamics underlying hysteresis in
the perception, we start from a comparable simple task described
in [3–5,7]. In this visual perception experiment, the subjects have
to observe a series of figures one after another and to discriminate
those in which the visual stimuli gradually change from a man’s
face to a kneeling girl (Fig. 1). Subjects notice the jump from the
man’s face to the kneeling girl at one point when subjects watch
the figures from left to right. The same observation in the reverse
direction, from right to left, shows that the transition from the
kneeling girl to the man’s face occurs at a later point. In this task,
the perception of the man’s face or the kneeling girl is a kind of
choice between the man’s face and the kneeling girl, so we adopt
a spiking neuron network for a two-alternative choice to simulate
the task [9].

The spiking neuron model [9,10] is composed of N neurons,
with NE pyramidal cells (80%) and NI interneurons (20%). The
pyramidal cells are subdivided into one nonselective neuron pool
and two selective neuron pools, I and II, which prefers the man’s
face and the kneeling girl, respectively. One of the selective pools
receives the stimuli denoting the man’s face and the other
receives the stimuli representing the kneeling girl. Each selective
pool has fNE pyramidal cells, and here we choose NE¼1600 and
f¼0.15. The architecture of the model is an all-to-all network
with pyramid-to-pyramid, pyramid-to-interneuron, interneuron-
to-pyramid, and interneuron-to-interneuron connections. Fast
AMPA receptors and slow NMDA receptors mediate the recurrent
excitatory postsynaptic currents (EPSCs), and GABA receptors
mediate the recurrent inhibitory postsynaptic currents (IPSCs).
External EPSCs including the stimuli and background noise are
mediated exclusively by AMPA receptors. We use wþ to denote
the relative connection strength inside the selective pool, and w�
to denote the relative connection strength between the selective
pools and those from the nonselective to the selective pool. Other
relative connection strengths equal one. To keep the overall
recurrent excitation constant in the spontaneous state when wþ
is varied, we choose w� ¼ 1�f ðwþ�1Þ=ð1�f Þ [11].

We chose the leaky integrate-and-fire model to depict the
dynamics of both pyramidal cells and interneurons [12], which
are characterized by a resting potential vL¼�70 mV, a firing
threshold vth¼�50 mV and a reset potential vreset¼�55 mV. The
subthreshold membrane potential v(t) follows the first-order
equation:

Cm
dvðtÞ

dt
¼�gLðvðtÞ�vLÞ�IsynðtÞ ð1Þ

where the membrane capacitance Cm is 0.5 nF for pyramidal cells
and 0.2 nF for interneurons. The leak conductance gL is 25 nS for
pyramidal cells and 20 nS for interneurons, and the refractory
period tref is 2 ms for pyramidal cells and 1 ms for interneurons.
Isyn(t) is the total synaptic current input to the neuron and is given
Fig. 1. The figures from left to right morph from a man’s face to a kneeling girl,

which is adapted from [5,7].
as follows:

IsynðtÞ ¼ IA
extðtÞþ IA

recðtÞþ IN
recðtÞþ IG

recðtÞ

IA
extðtÞ ¼ gA

extðvðtÞ�vEÞs
A
extðtÞ

IA
recðtÞ ¼ gA

recðvðtÞ�vEÞ
XNE

j ¼ 1

wjs
A
j ðtÞ

IN
recðtÞ ¼

gN
recðvðtÞ�vEÞ

ð1þ½Mg2þ
�e�0:062vðtÞ=3:57Þ

XNE

j ¼ 1

wjs
N
j ðtÞ

IG
recðtÞ ¼ gG

recðvðtÞ�vIÞ
XNI

j ¼ 1

wjs
G
j ðtÞ

where vE¼0 mV, vI¼�70 mV, [Mg2þ]¼1 mM [13]. The symbols
A, N and G denote AMPA, NMDA and GABA receptors, respectively.
We use the following values for the synaptic conductances (in nS)
in the spiking neuron network [9]: for pyramidal cells, gA

ext ¼ 2:1,
gA

rec ¼ 0:05, gN
rec ¼ 0:165, and gG

rec ¼ 1:3; for interneurons, gA
ext ¼

1:62, gA
rec ¼ 0:04, gN

rec ¼ 0:13, and gG
rec ¼ 1:0. The gating variable s

for AMPA and GABA obeys the first-order dynamics:

dsA
j

dt
¼�

sA
j

tA
þ
Xk

dðt�tk
j Þ ð2Þ

dsG
j

dt
¼�

sG
j

tG
þ
Xk

dðt�tk
j Þ ð3Þ

where tA ¼ 2 ms and tG ¼ 5 ms [14–16]. dðt�tk
j Þ denotes the spike

train of presynaptic neurons. The gating variable s for NMDA
follows the first-order dynamics:

dsN
j

dt
¼�

sN
j

tN
decay

þaxjð1�sN
j Þ ð4Þ

dxj

dt
¼�

xj

tN
rise

þ
Xk

dðt�tk
j Þ ð5Þ

where tN
decay ¼ 100 ms, tN

rise ¼ 2 ms and a¼ 0:5 ms�1 [14,15]. Note
that all synapses have a latency of 0.5 ms.

Because each figure consists of the features of the man’s face
and kneeling girl, the stimuli of each figure to the spiking neuron
model could be described as two independent Poisson spike
trains, one for the man’s face to neuron pool I and the other for
the kneeling girl to neuron pool II. The feature of the man’s face
will decrease and the feature of the kneeling girl will increase
when the figures morph from the man’s face into the kneeling
girl. Therefore, the frequency of the spike train to neuron pool I
will decrease and the frequency of spike train to neuron pool II
will increase when the figure changes from the man’s face to the
kneeling girl as shown in Fig. 2(a)(bottom): rmðtÞ ¼ 60ð1�t=TÞ Hz
for the man’s face, and rgðtÞ ¼ 60t=T Hz for the kneeling girl,
where t is the simulation time, and the subjects take time T to
finish one trial of observation from left to right or from right to
left in Fig. 1. The stimuli can be rewritten as rm ¼ 30�30f Hz and
rg ¼ 30þ30f Hz with fA ½�1,1�. The increase of f denotes the
fading out of the man’s face and the emergence of the kneeling
girl, while the decrease of f denotes the reverse direction of the
stimuli presentation. For external AMPA mediated currents, the
background Poisson spike trains are independent from cell to cell
and the spike trains have same frequency vext¼2.4 kHz.

In the spiking neuron model, the gating variables of NMDA
receptors are much slower than other variables. The typical
behavior of the system could be captured by those slow variables
according to the slaving principal [7] or adiabatic elimination [8].
Therefore, the spiking neuron model can be simplified into a
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Fig. 2. The example of the time evolution of the spiking neuron network and the

slow dynamics. (a) The raster plot of the neural activity in spiking neuron network

(top) and the simulation protocol (bottom). (b) The population firing rate of two

selective neuron pools. (c) The time course of firing rate transferred from the slow

dynamics using the relation: ri ¼HðxiÞ [17]. (d) The activity of the kneeling girl

selective neuron pool exhibits hysteresis. (e) The slow dynamics for the kneeling

girl also demonstrates hysteresis.
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nonlinear dynamic system with two variables related with NMDA
gating variables (the details of the derivation can be found
in [17]):

dS1

dt
¼ f1ðS1,S2Þ ¼�

S1

tS
þð1�S1ÞgHðx1Þ ð6Þ

dS2

dt
¼ f2ðS1,S2Þ ¼�

S2

tS
þð1�S2ÞgHðx2Þ ð7Þ

where S1ðA ½0,1�Þ for pool I, S2ðA ½0,1�Þ for pool II, HðxiÞ is the
input–output relation, HðxiÞ ¼ ðaxi�bÞ=ð1�expð�dðaxi�bÞÞÞ, x1 ¼

JN,11S1�JN,12S2þ I0þ I1þ Inoise,1, x2 ¼ JN,22S2�JN,21S1þ I0þ I2þ Inoise,2,
JN,11 ¼ JN,22 ¼ 0:3893wþ�0:4009, and JN,12 ¼ JN,21 ¼ 0:0687wþ�

0:0571. The kinetic parameters are tS ¼ 100 ms and g¼ 0:641.
Parameters for the input–output function are a¼ 270 ðVnCÞ�1,
b¼108 Hz, and d¼0.154 s. The overall effective external input to
each pool is I0¼0.3255 nA. The stimuli of one figure is described
as I1 ¼ JA,extrm to neuron pool I, and I2 ¼ JA,extrg to neuron pool II,
where JA,ext ¼ 5:2� 10�4 nA Hz�1 is the average synaptic coupling
with AMPARs. The background noise is an Ornstein–Uhlenbeck
process:

tA
dInoise,i

dt
¼�Inoise,iþZðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tAs2

noise,i

q
ð8Þ

where i¼1,2 and ZðtÞ is a white noise with /ZðtÞZðt0ÞS¼
s2

noisedðt�t0Þ. The noise amplitude is snoise ¼ 0:02 nA. The slow
dynamic system (6)–(8) has been used to reveal the mechanism
underlying two-alternative decision making and the parameters
have been calibrated in [17]. In this paper, we apply the nonlinear
analysis method to the slow dynamic system and investigate how
hysteresis can emerge from the neural activity.
3. Hysteresis of the neural activity

Assuming that subjects take 20 s (T¼20 s) to finish one trial of
observation from left to right, the frequency of the Poisson spike
train to the neuron pool I decreases from 60 to 0 Hz and that to
the neuron pool II increases from 0 to 60 Hz in the simulation (the
bottom panel of Fig. 2(a)). The raster plot, shown in the upper
panel of Fig. 2(a), indicates that the activity of the nonselective
neuron pool is almost invariant to the changing inputs. However,
the activity of the man’s face selective neuron pool I gradually
decreases and that of the kneeling girl selective neuron pool II
gradually increases with the changing input. The population firing
rates of two selective neuron pools are shown in Fig. 2(b). One
notable thing here is that the crossover of the two population
firing rates, about 14 s and f¼ 0:4, is behind the crossover of the
frequency of two input spike trains (at 10 s). Considering the rule
of the winner-take-all mechanism in many neural systems, we
assume that the network perceives the man’s face if the neurons
in the pool I fire more spikes than that in the pool II, and vice
versa. Therefore, in the simulation trial shown in Fig. 2(a) and (b),
the jump from the man’s face to the kneeling girl or perception
switching occurs at time 14 s or parameter f¼ 0:4.

Besides the observation from left to right, we also simulate the
trial of observation from right to left. In the reverse direction trial,
the initial stimuli of the man’s face is smaller than that of the
kneeling girl. The population firing rate of the neuron pool I
increases and that of the neuron pool II decreases along with the
decrease of f. The perception switches at another point f¼�0:4.
In Fig. 2(d), we plot the population firing rate of the neuron pool II
for two different directions of observation over the parameter (f).
The plots show a typical hysteresis loop of neural activity. At the
same time, the activity of the neuron pool I also demonstrates a
typical hysteresis loop but the data are not shown. Because the
activities of two selective neuron pools have hysteresis loops and
their cross points are different given increasing or decreasing f,
the switching point of perception (SPP) given increasing f differs
SPP given decreasing f.

The slow dynamic system is simplified from the spiking
neuron model; thus, it should demonstrate similar hysteresis.
We calculated the slow dynamic system (6)–(8) using a fourth
order Runge–Kutta algorithm given the same inputs as those of
the spiking neuron model. The response to the man’s face
decreases while the response to the kneeling girl increases as
shown in Fig. 2(c), in which the perception switches later than the
stimuli. The response for the kneeling girl shows a hysteresis loop
in Fig. 2(e). Thus, the spiking neuron model and the correspond-
ing slow dynamic system demonstrate hysteresis phenomenon
similar to the hysteresis observed in experiments.
4. The effects of asymptotic and transient behavior of neural
networks on hysteresis

The hysteresis of neural activity in this visual perception task
have been demonstrated in Section 3. In this section, we will
investigate the factors that influence hysteresis. Generally speak-
ing, the dynamics of the neuron network, including asymptotic
and transient behavior, have important impacts on neural
activity. As for the asymptotic behavior, the relative connection
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strength inside the selective neuron pools wþ plays a significant
role. The bigger wþ results in a stronger recurrent excitation
inside the selective pool and a weaker competition between
selective pools, which favors the persistent activity in one
selective neuron pool [18,19]. The persistent activity means that
the network memorizes the input information, which could result
in hysteresis.

To investigate the effect of asymptotic behavior on hysteresis,
we vary the relative connection strength wþ , which determines
the asymptotic behavior of the system. We simulate the spiking
neuron model and the slow dynamic system with fixed T(¼20 s)
and different wþ . As shown in Fig. 3(a), the hysteresis loop is
almost vanishing given wþ¼1.55, while it becomes significant
given wþ¼1.65, which indicates that the increase of wþ enlarges
the hysteresis loop. The consequence of the larger hysteresis loop
is a larger delay between the perception switching and the stimuli
switching. The results in Fig. 3(e) show that the increase of wþ
monotonically prolongs the delay between the switching point of
the perception and the switching point of the stimuli given the
fixed T, which is consistent with the consequence of an enlarging
hysteresis loop. We obtain the same results as that of the slow
dynamics as shown in Fig. 3(b) and (f). These results indicate that
the stronger excitation inside the selective pools favors hysteresis
in the perception.

For the transient behavior, the response time constant of
the neuron network determines the speed of its response to the
external stimuli. The slow response cannot keep pace with the
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Fig. 3. The effects of wþ and T on the hysteresis in the perception. The responses

for the kneeling girl with different wþ are shown in (a) for the spiking neuron

network, and in (b) for the slow dynamics, respectively. The results indicate that

the increase of wþ enlarges the hysteresis loop and enhances the hysteresis. The

responses for the kneeling girl with different T are shown in (c) for the spiking

neuron network, and in (d) for the slow dynamics. The faster change of external

stimuli enlarges the hysteresis loop. The system follows its asymptotic behavior

when the change of external stimuli is slow. The switching point of the perception

(SPP) with different recurrent strengths wþ and different T of the spiking neuron

network and the slow dynamics are shown in (e) and (f), respectively.
fast change of the external stimuli. Additionally, the network
may overshot because of recurrent excitation, which leads to the
difference of the switching point of perception and that of
the stimuli. To test this hypothesis, we set all parameters of the
neural network as constants, which implies that the response
time constant of the neural network is fixed. We change the
duration of the stimuli presentation T and fix the variation range
of the stimuli. A longer T means slower change of the external
stimuli while a shorter T means faster change of the external
stimuli. We show the activity of the neuron pool preferring the
kneeling girl given the same wþ(¼1.65) and different T in
Fig. 3(c). The results indicate that a faster change of external
stimuli leads to a larger hysteresis loop and a slower change of
external stimuli induces a smaller hysteresis loop. This result is
consistent with a recent psychophysical research about the
hysteresis in stereopsis and binocular rivalry [23]. In the experi-
ment, a shorter frame duration of the movie sequence leads to a
larger hysteresis loop (see Fig. 2 in [23]).

To quantify the overall effects of change speed of the external
stimuli and the relative connection strength on hysteresis, we
show the SPP given different change speeds of external stimuli
and different recurrent connection strengths. The results, shown
in Fig. 3(e), indicate that a faster change of external stimuli and a
stronger connection strength lead to a larger SPP and more
significant hysteresis in the perception. The counterpart results
of the slow dynamic system are shown in Fig. 3(b), (d), and (f).
5. Multiple stable steady states lead to hysteresis in the
perception

Fig. 3 demonstrates that the increase of the relative excitation in
the selective neuron pool or speedup of the external stimuli leads to
more obvious hysteresis in the perception. The similarity between the
results about the spiking neuron model and the slow dynamic system
suggests that we can reveal the neural dynamics of the hysteresis in
the perception using nonlinear analysis of the slow dynamic system.
By setting the right hand side of Eqs. (6) and (7) as zero, we obtain
two algebra equations about S1 and S2. The steady state of the slow
dynamic system can be obtained by solving these two equations.
Assuming that ðŜ1,Ŝ2Þ is a steady state of the slow dynamic system,
then the Jacobian matrix of the system about this steady state is

J¼

@f1

@S1

@f1

@S2

@f2

@S1

@f2

@S2

2
4

3
5
ðŜ1 ,Ŝ2Þ

ð9Þ

where @fi=@Sj ¼�di,j½1=tsþgHðxiÞ
��
ðŜ1 ,Ŝ2Þ

�þð1�ŜiÞgJN,ij@H=@xi

��
ðŜ1 ,Ŝ2Þ

,

where di,j ¼ 1 if i¼ j, and di,j ¼ 0 if ia j. The sign of the real part of

the eigenvalues of the Jacobian matrix at the steady state determines
the stability of the steady state. The negative real part of the
eigenvalue corresponds to the stable steady state, and the positive
real part of the eigenvalue corresponds to the unstable steady state
[20].

We first calculate the steady state of the slow dynamic system
with a fixed average synaptic coupling with AMPARs (JA,ext ¼

5:2� 10�4 nA Hz�1), the variant recurrent connection inside the
selective neuron pool wþ , and the increasing f. The results are
shown in Fig. 4. When wþ is small, the competition between two
selective neuron pools is weak. The system has only one stable
steady state (Fig. 4(a) and (b)). The asymptotic dynamics of the
system does not support the hysteresis because the steady states
of Ŝ1 and Ŝ2 cross at f¼ 0. However, the fast change of external
stimuli may make the system unable to keep pace with the external
stimuli and results in hysteresis. When 1:588owþo1:595, the
slow dynamic system has five steady states in the neighborhood of
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f¼ 0 (Fig. 4(c) and (d), especially, see the inset of the figures). Three
of them are stable, and the other two are unstable. When
wþ41:595, the system has strong excitatory recurrent inside the
selective pool and the competition between selective pools is strong.
Along with the increase of f, the number of steady states of the
system changes from one to three and then to one (Fig. 4(e) and (f)).
The system has three steady states if fA ½f1,f2�, where f1o0 and
f240. Two of them are stable, and the other is unstable. These
three steady states can account for the hysteresis in the perception.
When f increases from �1 to 1, the neuron network perceives
the man’s face until f4f2. While f decreases from 1 to �1, the
neuron network perceives the kneeling girl until fof1. Thus, the
hysteresis emerges from this multiple-stability of the system.

Notably, there is a small parameter domain supporting five
steady states in Fig. 4, which is different from the previous studies
[3,4,7]. To clearly demonstrate the bifurcation of the slow
dynamic system, we vary other parameters besides wþ and f.
We find that the slow dynamic system is codimension three and
the parameters JA,ext, wþ , and f control the bifurcation, which
exhibits a swallowtail catastrophe caused by two interacting
cusps. We show an example of the interaction between two cusps
in Fig. 5, where JA,ext is fixed as 2:5� 10�4 nA Hz�1, wþ and f are
variant. For simplification, only the values of Ŝ1 are shown. The
system has one steady state if wþ is small (Fig. 5(a)). Along with
the increase of wþ , the system has multiple steady states and two
separate cusps emerge simultaneously, one locates at upper and
the other locates at the lower segment of steady state curve of Ŝ1.
Two cusps include four critical steady states, labeled as I, II, III,
and IV from top to bottom in Fig. 5(b). The upper cusp develops
rightward and the lower cusp develops leftward with the increase
of wþ , in other words, f of the critical steady states I and II
increase and f of critical steady states III and IV decrease with the
increasing wþ . Once f of the critical steady state I equals and
then becomes larger than that of the critical steady state IV, the
slow dynamic system has five steady states as shown in
Fig. 4(c) and (d), as well as in Fig. 5(c). The further increase of
wþ leads to further leftward shift of the upper cusp and further
rightward shift of the lower cusp (Fig. 5(d)). When the critical
steady state II meets III, the two cusps collapse into one bigger
cusp as shown in Fig. 5(e). The loci of the critical steady states are
drawn in Fig. 5(f). The lines l1, l2, l3, and l4 correspond to the
critical steady states I, II, III, and IV, respectively. The lines l1 and l2
depict the upper cusp and the lines l3 and l4 depict the lower cusp.
In the overlapping area of upper and lower cusps, the system has
five steady states (red area in Fig. 5(f)).

The overlapping area of two cusps in Fig. 5(f), which is
controlled by the parameter JA,ext, decreases with the increase of
parameter JA,ext and finally vanishes. We show an example that the
slow dynamic system has only one cusp with JA,ext ¼ 6:9�
10�4 nA Hz�1 in Fig. 6. The system has a single steady state given
small wþ in Fig. 6(a). The number of steady states varies from one
to three then to one along with the increase of f given a large wþ

in Fig. 6(b). The locus of the critical steady state is shown in
Fig. 6(c), which is same as the usual cusp [3,4,7]. However, the
whole picture of the bifurcation of the slow dynamic system is
obviously not a cusp catastrophe with codimension two. As shown
in Fig. 6(d), the slow dynamic system is codimension three, and the



−1 0 1
0

0.4

0.8

φ

w+=1.53

−1 0 1
0

0.4

0.8

φ

w+=1.63

2.5 3.5 4.5
6.5

x 10

−1−0.5 00.5 1

1.55

1.6

1.65

Jφ

WW

Fig. 6. The overlapping of two cusps controlled by JA,ext. (a,b) The slow dynamic

system, with a large JA,extð ¼ 6:9� 10�4 nA Hz�1), has a single steady state given

small wþ and three steady state with large wþ . (c) The loci of the critical steady

states, which are the same as the usual cusp. The slow dynamic system has three

steady states in the yellow area. (d) The loci of critical steady states given four

different JA,ext. The overlapping area of two cusps decreases with the increasing

JA,ext and two cusps collapse into one big cusp. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)

H. You et al. / Neurocomputing 74 (2011) 3502–3508 3507
parameter JA,ext controls the overlapping of two cusps. With the
increasing of JA,ext, the overlapping area decreases and finally
vanishes when two coexisted cusp becomes one cusp as shown
in Fig. 6(d). From the above analysis, we find that the slow dynamic
system reveals a codimension three swallowtail catastrophe, which
is controlled by three parameters: JA,ext, wþ and f.
6. Conclusion and discussion

In conclusion, we demonstrate the hysteresis in the perception
using an example of simple visual discrimination task. By simula-
tion of a spiking neuron network and analysis of the correspond-
ing slow dynamic system, we find two factors affecting the
hysteresis of perception: one is the strength of the synapse, the
other is the change speed of the external stimuli. The simulation
shows that a stronger connection inside the selective neuron pool
leads to a larger hysteresis loop of the neuron activities, which
results in a larger gap between the two points of the perception
switching. The results are consistent with previous results about
working memory, where the stronger connection inside the
selective neuron pool favors persistent activity and working
memory [19]. The memory of the previous stimuli directly causes
the hysteresis in the perception. The analysis of nonlinear
dynamics on the slow dynamic system indicates that the system
could have multiple steady states given proper parameters, for
examples, the yellow area in Figs. 5(f) and 6(c), where there are
two stable steady states around f¼ 0. The direct result is that the
switching point of perception changes given an increasing of f or
decreasing of f in the observation. For the change speed of the
external stimuli, the system cannot keep pace with the external
stimuli if the external stimuli changes too fast and the hysteresis
partly is the consequence of the lag between the external stimuli
and the response of the system. The simulation results indicate
that a faster change of external stimuli leads to more obvious
hysteresis, which is consistent with a recent experiment [23].

One notable thing is the relationship between hysteresis in the
perception and bistable perception. For hysteresis in the perception,
the perception could change at one point given a sequential changing
stimuli, but the perception changes at another point given the same
sequential stimuli in a reverse direction. The stimuli change along
with time in the experiment as shown in Fig. 1. For bistable percep-
tion, the certain stimuli are perceived in a bistable way, alternating
between two distinct perceptions. The bistable perception occurs in
ambiguous visual displays, ambiguous stimuli in the auditory and
tactile domains, and monocular and binocular rivalries. The bistable
perception has been extensively studied and the mechanism has
been revealed [24,25]. Nevertheless, the stimuli at the two ends of the
task of hysteresis in the perception can be clearly classified into one
category. Although the stimuli presented in the middle in one trial of
the experiment of hysteresis in the perception often are ambiguous,
given an ambiguous stimuli for a long time, the subject could per-
ceive the stimuli as one of the two objects presented at the two ends
of the task in hysteresis in the perception. Therefore, we investigate
the hysteresis but not bistability in perception.

The last thing should be addressed is that our model is not
specific to visual hysteresis even we apply it to a visual discrimi-
nation task between the man’s face and the kneeling girl. The
reason is that the input to decision unit is not the direct visual
signal from retina or primary visual cortex but is relayed and
calculated by higher order cortical structures. For example, in the
random dots coherent motion discrimination task, the motion
signal is relayed by the middle temporal area to decision unit in
the lateral intraparietal area of monkey brain [26]. Therefore, the
specialty of the sensory signal is ignored before it is relayed to
decision unit in our model. As a consequence, our model cannot
discriminate the hysteresis caused by different sensory input,
such as visual stimuli, auditory stimuli, olfactory stimuli, and so
on. To overcome this shortcoming, the speciality of sensory input
must be considered in the future models.
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